
DCM / VME / ONCS Inter faceDCM / VME / ONCS Inter face

Overview Issues:

• Mechanical Considerations
• ONCS / DCM Interface
• Communications Protocol to DCM
• DSP Software
• Tests and Progress Report

J.Nagle - DCM Final Design Review



Mechanical Considerations

The DCM’s reside in a 21 slot, 280 mm deep VME64X crate
(which includes P0, P1, and P2 connectors).  The crate controller
(MVME2301) uses a 120 mm extender card for connection.

The large insertion force due to three connectors with 415 pins is
dealt with using Rittal injector/ejector (IEEE-1102).  Note that the
Motorola PowerPC controller comes with these injectors.

VME64X Crate

MVME2301 Controller (actually a 167)
VMEbus Analyzer
DCM
Pulser Module



Heat Transfer Plate

FPGA 10K for VME DSP 5

DSP  1-4

FPGA 8K
GLINK Underneath

FPG
A

 10K
 (Z

ero Suppression)

and D
ual-Port M

em
ory

U
nderneath

P1/J1 P0/J0 P2/J2



Cooling in the lab is achieved with
six rack-mounted fans for the crate.

The most significant on-board
cooling issue is with the GLINK
chip (~ 3 Watts) located on the
underside of the daughter card.

We have attached using a heat
conducting pad a black anodized
aluminum block which then
connects to a black anodized sheet
on the  The sheet connects to the
front panel.

Heat Sink 0.75” X 0.50” X 0.20”

GLINK

Black Anodized Sheet



DCM to ONCS Inter face

Not really a topic for this review… However...

Two tasks will run simultaneously in the crate controller
(DCMtask and ONCStask).  The DCMtask wil l have exclusive
rights to VME transfers (and the crate controller is the only VME
master in the crate).
The two tasks communicate using the VxWorks message queue
passing specified information for various downloading and
uploading procedures.

O
N

C
St

as
k D

C
M

task

D
C

M
 B

oard

VME transfer

message QInterface to Run Control



24 bit address 32 bit data field
23 22-18 17-14 13-0 31-16 15-0
Broadcast DCM

address
Operation
Code (OP)

Don’ t
Care

L1 table /
test data

VME-DCM
command / status

DCM OPERATION CODES (OpCode)

A24/D32

Geographic Addressing (5 bits)

Broadcast for write operations

Defined Operations Codes (4 bits)

Data Transferred



Overview of Operation Codes

Opcode (1):  Allows for clear and reset of on-board devices
         (for example DSP, link port, level-1 port).

Opcode (2) and (3):  Specifies which DSP link port is addressed
         in following VME write or read operations.

Opcode (4) and (9):  Write and read operations to DSP link port.
         Each operations is a 16-bit data transfer, thus for
         32-bit words two transfers are necessary and three
         transfers for 48-bit words.

Opcode (8):  Checks the status of the five DSP link ports.  ACK
         and LCK bits specify whether there is room to write
         to the link port buffer and data to read form the
         buffer, respectively.



Opcode Definition * note
1 Write DCM Configuration Word Define DCM state
2 Define LINK Input DSP #, Word size Define which DSP VME talk to and word s
3 Define LINK out DSP #, Word size Define which DSP VME take data from and 
4 Write data to DCM Link Port Send data/program word to DSP
5 Write to L1 Primitive Look-up table VME D 16-31 as table address
6 Write test data to L1 input FIFO VME D 16-31 as test data input
7 Interrupt  DSP Signal DSP
8 Read DCM-VME link port status
9 Read data from DSP link port receive data / program word from DSP
10 Read DCM status
11 Read Compressor port status

Operation Code Definitions



DCM to VME Communication

Document (DCM to VME Interface) defines a set of operation
codes for communication.  The transfers are non-standard
A24/D32 using a user-defined address modifier (AM=0x18).
We have successfully tested the memory map for MV162,
MV167 and MVME2301.  Geographic addressing of DCM
has been tested.

DATA CLK to DSP Link Por t

VME DTACK*

VME DS0*

Note:  VME wr ite 106 Hz
           VME read  4 x 105 Hz After reset clear -- boot process over VME



DSP Software Issues

We are using Analog Devices software…
asm21k (Analog Devices assembler)
g21k   (GNU CPP version 3.2 < 2.3.3 snapshot)
ldr21k  (Analog Devices 21000 Loader 3.22)
--we modified boot kernel for VME transfer booting

Known Limitations…
Windows feature tested only with 3.1
Beta version for Windows 95 and NT available in March
Known bug in binary format output (not observed)…

Investigated 3rd Party Software Support -- does not look promising

Extensive tests using assembler and C code, but without
optimization features.



.SYSTEM         YER_BASIC_062_C_ACH;

.PROCESSOR = ADSP21062;

!bank 0...
!4k rth
.SEGMENT/RAM/BEGIN = 0x00020000 /END = 0x00020fff /PM seg_rth;

!4k initialization
.SEGMENT/RAM/BEGIN = 0x00021000 /END = 0x00021fff /PM
seg_init;

!12k code
.SEGMENT/RAM/BEGIN = 0x00022000 /END = 0x00024fff /PM

seg_pmco;

!bank 1...
!4k pm data
.SEGMENT/RAM/BEGIN = 0x00028000 /END = 0x00028fff /PM
/WIDTH=32 seg_pmda;

!4k dm data
.SEGMENT/RAM/BEGIN = 0x00029000 /END = 0x00029fff /DM
/WIDTH=32 seg_dmda;

!16k heap
.SEGMENT/RAM/BEGIN = 0x0002a000 /END = 0x0002dfff /DM
/WIDTH=32 seg_heap;

!8k stack
.SEGMENT/RAM/BEGIN = 0x0002e000 /END = 0x0002ffff /DM
/WIDTH=32 seg_stak;

! external area for external port fifo transfers
.SEGMENT/RAM/BEGIN = 0x00410000 /END = 0x0041FFFF /DM/uninit
SEG_DUM;

.ENDSYS;

DSP Memory Architecture

Two banks each having one
Megabit SRAM (32k 32-bit words)
for the SHARC 21062

1)  Program Memory
2)  Data Memory

In this example:
heap == 16k
data  ==   4k

In the 5th DSP can the memory
contain an entire un-zero 
suppressed event….

TEC = 20 words x 64 channels x
4 FEM/DCM fiber (Day-1)
x 4 DCM/DCBoard

         = 20k



Boot Procedure

• At power up the FPGA 10K (handling VME transfers) automatically
boots from on-board EPROM.
• VME Operation Code (1) clears the DSP’s and associated link ports
and upon reset forces the DSP’s to boot from on-board EPROM.  This
initial boot program simply gives the appropriate hand-shaking and
then resets the DSP’s to wait for their program.  This booting is
mediated by the FPGA 10K into the DSP link ports.
• The main program is transferred to the DSP’s via Operation Code
(4) transfers.  The DSP’s send back a control status word to verify
successful booting.
• Booting DSP’s over VME allows easy changing of programs and
individual programs for each DSP if desired.
• The boot time is approximately 12 milliseconds.



•The compressor port (FE2_DCM) FPGA 8K boots itself on power
up from an on-board EPROM.
•The  FPGA 10K (used for reading out dual-port memory and
handling zero suppression) is booting through the serial port of the
associated DSP, mediated by the FPGA 8K.

•The external list memory, external pedestal memory and
threshold values (stored in the FPGA 10K memory) are loaded
and read back via the serial port of the associated DSP.

NCONFIG

CONF_DONE

NSTATUS

DATA BITS

Compressor Por t Boot



Loading Ser ial Data to Compressor Por t

We have successfully loaded serial data to li st memory, pedestal
memory, threshold memory and fake dual-port data.  We have
also read back and verified all of the above memory values.

     switch(cmdcode) {

     case RESET:
          reset(module,&status);
     break;

     case LOAD_DSP_PROGRAM:
          loadDspProgram(module,unit,fi lename,&status);
     break;

     case LOAD_FPGA:
  loadFPGA(module,unit,filename,&status);

     break;

     case GET_LIST_MEMORY:
  getListMemory(module,unit,start_address,number_reads,filename,&status);

     break;

     case LOAD_LIST_MEMORY:
  loadListMemory(module,unit,start_address,number_writes,fi lename,&status);

     break;

     case GET_PED_MEMORY:
  getPedMemory(module,unit,start_address,number_reads,filename,&status);

     break;

     case LOAD_PED_MEMORY:
  loadPedMemory(module,unit,start_address,number_writes,fi lename,&status);

     break;

     case GET_THRESHOLD_MEMORY:
  getThresholdMemory(module,unit,start_address,number_reads,filename,&status);

     break;

     case LOAD_THRESHOLD_MEMORY:
  loadThresholdMemory(module,unit,start_address,number_writes,fi lename,&status);

     break;

     case LOAD_FAKE_DATA:
  loadFakeData(module,unit,start_address,number_writes,filename,&status);

     break;

     case GLINK_ONLINE:
  GLINK_online(module,unit,&status);

     break;

     case GET_DATA_EVENT:
  getDataEvent(module,unit,start_address,number_reads,filename,&status);

     break;
     } ;

/WE

List Memory Data Bit



CAV

DAV

EOWS

/RD

Data Control Bits

Read Out Data

We use an HP82000 connected to a test board with a GLINK and
transceiver to send data over fiber into the DCM.   We have checked
heck on control bits (CAV and DAV) and the timing relative to end
of write (short format) signal and /RD.

Data Transfer from Fiber Optic



Compressor Por t:  Reading Data Out of Dual Por t Memory

List Memory D0

10K FPGA ACK

DSP /RD

When reading out the dual port memory, the DSP indicates
when DMA is started and ready for data (/RD).  The 10K
FPGA checks the external list memory and then reads out
that location from the dual port and sets ACK  at transfer
time.  ACK  high is conditioned by /RD low.

We have tested sending data over fiber  into the compressor port,
through the GLINK, into dual-port memory, through the zero
suppression FPGA, into the DSP, and out through the DSP link port
over VME.



DSP /RD

VME DTACK*

/ADD11

Pulser Tr igger

Tr igger  sent to HP programmable unit which then sends 50 data
words over fiber optic.  DSP /RD is low when ready for data and
goes high after full DMA transfer.  Then data sent out of DSP link
port over VME (DTACK ).  Transfer of 50 words takes
approximately 250 microseconds.  Each repeated write and read to
dual port memory flips the page as seen by FPGA 8K /ADD11 line.

Page Flip



Speed L imits

•DSP Clock is 40 MHz.  Link ports can write or read 4 bits per
clock cycle, thus the 32-bit word transfer rate between DSP’s is
5 MHz.

•VME write operations (Opcode 4) run at 1 MHz for a 16-bit word.
VME read operations (Opcode 9) run at 400 kHz for a 16-bit word.
These are non-block transfers.

•DSP serial port access to memory on the compressor port (eg.
Pedestal, Threshold, List memory) runs at 4 MHz per bit.

•For example, since pedestal values are 8-bits data, loading of
pedestal data occurs at 500 kHz.  There is additional overhead for
transferring this data with VME write operations.  There are 128k
pedestal channels thus requiring 250 mill iseconds.


